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Abstract-An auxiliary problem is introduced in the solution of inverse heat conduction problems with 
geometries not fully specified. Resolving the position of the unknown boundary subject to a Dirichlet 
condition leads to the solution of a nonlinear algebraic equation. Imposing Neumann or Robin conditions at 
the unknown boundary requires the solution of a first-order nonlinear, ordinary differential equation. The 
method yields accurate results for exact data, while measurement errors render the Neumann problem 
insoluble. The Dirichlet and Robin problems are still solvable, and for these problems, the errors in the 

investigated boundaries increase with their depth, a nature of the problem being investigated. 

INTRODUCTION 

TRADITIONAL heat conduction problems are concerned 
with the determination of the temperature distribution 
in a body when the system geometry, governing 
equation, and initial and boundary conditions are all 
known. Problems of this type are called direct or 
regular problems. Another class of problems arises 
when one of those conditions just mentioned is either 
unknown or not fully specified, and the unknown is 
solved with the help of an extra condition [l-22]. For 
example, when the governing equation is given and the 
boundary conditions are overspecified at one of the 
boundaries, but the system geometry is not fully known, 
and the missing portion of the geometry is being 
investigated in the solution, then the problem becomes 
an inverse problem. This problem finds practical 
applications in nondestructive testing of flaws and 
cavities, in which the surface temperature of a body is 
measured by infra-red scanning. The scanned surface 
also dissipates heat by convection. Two conditions are 
thus available at the same surface. The additional 
information provided by the measured temperature is 
used along with the others to determine fully the 
geometry of the investigated body. The present inverse 
problem forms the theoretical basis for developing 
infra-red computerized axial tomography in com- 
petition with the X-ray computerized axial tomo- 
graphy (X-ray CAT) that is now prevalent in the 
medical technology. 

Several methods have been developed for the 
solution of this inverse problem. A pattern recognition 
technique has been proposed [lo, 11,151. A numerical 
searching scheme has been developed to solve this 
problem when a prescribed temperature is imposed at 
the unknown boundary [17,20]. For a prescribed heat 
flux at the unknown boundary, a different method of 
intrinsic matching was found useful [ 1 S]. 

A close examination of the developed methods 

reveals that they are only useful if the unknown 
boundary is made up of line segments that are parallel 
to the orthogonal axes of the investigated system. For 
instance, these methods can only detect rectangular 
cavities in Cartesian coordinates. Furthermore, the 
solution methods developed vary with the type of 
condition appearing at the unknown boundary. There 
is a lack of a general approach to the solution of this 
problem. 

It is the purpose of this paper to present a general 
solution method. As will be shown, the method to be 
developed is independent of the type of condition 
imposed at the unknown boundary. Furthermore, the 
method is valid for any configuration of this boundary 
as long as it has a smooth curvature and is located close 
to the surface. 

DESCRIPTION OF THE INVERSE PROBLEM 

Consider the two-dimensional systems shown in Fig. 
1. The position of the irregular boundary is unknown in 
each case. One of three situations may physically arise 
at this irregular boundary to represent (i) a Dirichlet 
condition (prescribed temperature), (ii) a Neumann 
condition (prescribed heat flux), or (iii) a Robin 
condition (convective heat exchange with a source at a 
prescribed temperature). The opposite surface at y = 0 
or r = R, dissipates heat to the surrounding at zero 
temperature (a homogeneous Robin condition). The 
temperature profile along this surface is also measured 
by infra-red scanning and is thus known (a nonhomo- 
geneous Dirichlet condition). The conditions at x = 0 
and L of the plane slab or those conditions in the 4 
direction in the cylinder and the sphere are all 
homogeneous. Specifically, the plane slab can be 
divided along the x direction at sections where the 
temperature gradients are negligibly small; see Fig. 1 (a). 
These sections are considered adiabatic planes (their 
validity will be examined later). As for the cylinder and 
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NOMENCLATURE 

A,, A,, Cm Do, coefficients in the orthogonal 

E,, F,, G series expansions of the tempera- 

Bi 

cc1 
d 

k 

L 

1, m 
M 
N 

Fi 

P 

R 

RO 

Ir 
T 

ture 
Biot number, hL/k or hR,,Jk 

column vector defined by equation (27) 
thickness of the slab in the auxiliary 
problem 
constant heat flux at S4 
convective heat transfer coefficient 
Jacobian matrix with elements defined by 
equations (24H26) and (29H31) 
thermal conductivity 
length of slab 
direction cosines 
number of points discretized along t; axis 
number of terms used in the orthogonal 
series expansions of the temperature 
normal vector 
Legendre polynomial or amplification 

factor 
residual 
outer radius of the cylinder or sphere 
radius coordinate or position vector 
surface 
temperature 

U, I/’ functions of u, u, respectively 

% 0, x, Y coordinates 
[Z] correction vector expressed in equation 

(23). 

Greek symbols 
6 thickness of the slab in the auxiliary 

problem 
& truncation error 

? dimensionless thickness, y/L 

0 dimensionless temperature defined by 
equations (lo), (11) and (12) 

5 dimensionless length, x/L 

dimensionless radius, r/R, 

$ polar angle. 

Subscripts 
AC 

DC 

refers to AC component in the electrical 
analogy 
refers to DC component in the electrical 
analogy 
refers to the location of point along 5 axis 
refers to the temperature imposed at the 
unknown boundary 
refers to the source temperature with 
which the unknown boundary exchanges 
heat 

b 

S 

00 refers to ambient. 

Superscripts 
1 refers to [th correction in the Newton- 

Raphson method 
refers to derivative. 

the sphere, the temperature ,must be finite and single 
valued in the 4 direction. 

It is assumed that the systems are stationary, in 
steady state, and have no sources or sinks. Their 

(a) Plane Slab 

(b) Cylinder 

FIG. 1. Systems investigated in the solution of the inverse 
problem. 

thermal conductivities are constant. Under these 
conditions, the governing equation describing the heat 
flow is a Laplace equation. 

The inverse problem mentioned above can be, 
considered a Cauchy problem because out of three 
possible conditions (Dirichlet, Neumann, or Robin) 
imposed at any boundary, only two conditions are 
independent. Then, a prescription of the Dirichlet and 
Robin conditions at the outer (scanned) surface in the 
present inverse problem is equivalent to the 
specification of Cauchy conditions at this surface [23]. 
For the present study, these Cauchy conditions are used 
to locate the unknown boundary in the inverse 
problem, and these Cauchy conditions are also the 
result of the condition that appears at the unknown 
boundary as well as the geometry of this boundary. 

SOLUTION METHODOLOGY 

The- inverse problems illustrated in Fig. 1 can be 
solved by considering an auxiliary problem. Take the 
plane slab for example. The auxiliary problem has 
boundaries at y = 0 and x = 0 and L coincident with 
those of the inverse problem; however, the remaining 
boundary of this auxiliary problem extends beyond the 
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irregular boundary of the inverse problem and 
terminates at the dashed line; see Fig. l(a). Hence, the 
auxiliary problem is bounded by a set of regular 
boundaries. For this auxiliary problem, it is not 
necessary to specify the position ofthe fictitious (dashed 
line) boundary, nor is it necessary to prescribe its 
condition. However, the assumptions made earlier for 
the inverse problem are still applicable to the solution 
of this auxiliary problem. 

The auxiliary problem can be solved with the use 
of the separation of variables technique. The homo- 
geneous conditions mentioned earlier can be used to 
derive the temperature as a series of the form 

T(r) = $ C,V(u)V(u) (I) 
n=o 

where r denotes a position vector with components u 
and u. U and I/ are functions of u and v, respectively. 

The next step in the solution is to use a 
nonhomogeneous boundary condition to determine 
the coefficients C,, in equation (1); it is at this point that 
the solution of the auxiliary problem departs from the 
traditional method of solution. The reason is that a 
regular problem will arise if the nonhomogeneous 
condition is taken from the fictitious boundary; see 
Fig. 2. However, since the condition on this boundary 
is unknown at this moment, one is forced to use the 
nonhomogeneous condition (scanned temperature) at 
y = 0 to solve for these coefficients. Because of the 

elliptic nature of the governing equation, it will be 
shown later that the Fourier coefficients can be 
determined independently of the location of the 
nonhomogeneous condition used to resolve them. 

It is noted that the irregular boundary of the original 
inverse problem is now located inside the system 
domain ofthe auxiliary problem ; see Fig. l(a). Since the 
auxiliary problem has just been solved, finding the 
position ofthe irregular boundary is reduced to the task 
of locating the position of the contour line in the 
auxiliary domain where the condition imposed at the 
irregular boundary is satisfied. For example, if a 
Dirichlet condition is imposed at the irregular 
boundary of the plane slab, then the position of this 
irregular boundary is located by searching for the 
equivalent isotherm inside the domain of the auxiliary 
problem. 

The location of the irregular contour line in the 
auxiliary problem is accomplished through an inverse 
collocation scheme. The derived temperature expres- 
sion for the auxiliary problem is forced to satisfy the 
condition prescribed at the irregular contour. The 
solution now depends on the condition that is imposed 
at the contour. A nonlinear algebraic equation results if 
a Dirichlet condition appears at the contour. A 
Neumann or a Robin condition at the contour will lead 
to nonlinear ordinary differential equations. In either 
case, the Newton-Raphson method can be used to 
numerically locate the unknown boundary in the 
inverse problem. 

EQUATION 
FOR T 

THREE HWXENEOUS 
CONDITIONS ON 

THREE KhWN 
_ HJWDARIES 

T(F)=& du>V(v> 
n=on 

I 

CCMDITION TO 

BOUNDARY INVERSE 
AT yr, PROBLEM 
CR r’Ro 

Fm. 2. Logic for solution of the inverse problem. 
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FIG. 3. A diagram showing the three problems solved for the 
plane slab example. 

EXAMPLE 

An example is provided in this section to illustrate a 
practical application of the developed methodology. 
Consider the plane slab shown in Fig. 1, which is 
redrawn in Fig. 3. The governing equation and 
boundary conditions for this problem are formulated 
dimensionlessly as follows : 

Governing equation 

V%(& $ = 0. (2) 

Boundary conditions 

s,: 
040, q) = 0 (adiabatic condition) (3) 

s,: 
0&l, q) = 0 (adiabatic condition) (4) 

S, (two conditions are given) : 

S,,(<, 0) = Si@(& 0) (convective condition) (5) 

Q(& 0) = Oi&) (scanned temperature) (6) 

where equation (6) is an extra condition. The objective 
of this problem is to locate the unknown boundary S4 ; 
along this boundary there may be : 

a Dirichlet condition 

ecr, fm = 1, (7) 

a Neumann condition 

e.cr, fm = 1, 

or a Robin condition 

(8) 

e.c5, f(5)] = W 1 - W. f(M). (9) 

In those equations given above 

5 = xJL, q = yJL, Bi = hL/k = Biot number 

h is the convective coefficient, and k is the thermal 
conductivity. 

The example given here will be divided into three 
subproblems in which each has a different condition 
imposed at Sq. The dimensionless temperature, 8, is 
defined differently for these subproblems. For example, 
a Dirichlet condition at S, requires that 6’ be defined as 

w, ‘I) = 
T(L?) - T, T(599) =---. 

T _ T 

TJ 
(10) 

0 cc 

For a Neumann condition at S,, 

w, 4 = 
T(5, ‘I) - Tm T(L 4 =- 

(gL,kl 

(d/k) 
(11) 

For a Robin condition at Sq. 

T(5,v) - L 
@(Ltl)= T_T 

T(5, v) =-, 
r, (12) 

s co 

These expressions relate 0 with the actual temperature 
T, and in these expressions the ambient temperature, 
T,, has been taken to be zero; g is the heat flux. 

For all three subproblems, equation (2) can be solved 
with the use of conditions (3)-(5) to give 

@(c, rl) = A,@@+ I)+ f A, 
n=l 

x E cash naq + sinh nnq cos nn5. 
> 

(13) 

At r~ = 0, equation (13) reduces to 

O(<, 0) = A, + f A, g cos rut<. 
“=I 

(14) 

This equation will be used to least-squares fit the 
scanned surface temperature data, e,(t), equation (6) in 
order to find the coefficients A, and A, in the Fourier 
series expansion of the temperature. The solution 
developed so far is common to all three subproblems ; 
what follows now depends on the type of condition 
imposed at &. 

Dirichlet condition 
Imposing a Dirichlet condition at the unknown 

boundary S4 requires that the nonlinear equation 

N-l 

1-,40(Bi~+1)- C A, 
n=l 

x zcosh nnq+sinh nnr] 
> 

cos nnt = 0 (15) 

be satisfied at each point (5, r~) along the unknown 
boundary. Hence, the position of the unknown 
boundary of the Dirichlet-condition problem can be 
found by solving (15) for n as a function of <. Because 
analytical solution of (15) is not possible, one must 
resort to numerical methods ; the position of the 
boundary is determined at discrete points &by solving 
(15) for the associated roots vi. The Newton-Raphson 
method is used to numerically determine these roots. In 



A general method for the solution of inverse heat conduction problems 51 

this method, the (l+ 1)th corrected root is expressed as for i = 1 to M. The next step in the solution is to resolve 
the problem posed by the coupling of vi with its 

‘111+ 1) = qj” + Z$” (16) neighboring points vi _ 1 and vi + 1 ; both of which being 
unknown at the moment. Also notice that equation (21) 

where is nonlinear. 

N-l 

1 - A,(&#) + 1) - c A, 
z!” = n=l ( 

f cash nxr#) + sinh nrr#) 
> 

cos nn& 

N-l 

A&+ 1 A,nn 
( 

g 
(17) 

sinh nnr# + cash ns# 
> 

cos n7& 
“=I 

In practice, a sufficiently accurate starting value t~j’) 
is provided by a simple brute-force algorithm in which 
the neighborhood of the root is determined by a 
bisection method. 

Neumann condition 
For a Neumann condition at the unknown 

boundary, the expression to be satisfied is 

1 - A,Bim 

The Newton-Raphson method is again useful to 
solve this problem. In this method, the corrected 
solution for vi is again expressed as equation (16). 
However, this equation now becomes a matrix 
equation of order M, for which the iterative procedure 
requires an initial trial vector t#) that is accurate 
enough to assure a convergent iteration. A procedure is 
described below to evaluate this vector. 

N-l 

A,nn m 
[( 

z sinh nrrq+- cash nxq 

- 1 
( 

g cash mm+ sinh nnq 
> 1 sin nnl = 0 (18) 

where 1 and m are the direction cosines of the outward- 
drawn normal at the unknown boundary. These 
direction cosines are functions of the position r. 

(1) The positions r] 1 and qM at 5 = 0 and 1 can be 
found by making use of the adiabatic conditions 
imposed there; see Fig. 3. Such conditions are 
physically possible when the slope of the boundary S, 
vanishes at these points. Consequently, the central 
differencing terms in equation (21) vanish at these 
points, and ~7~ and Q, are uncoupled from their 
neighboring points. This allows the positions vi and qM 
to be found directly from equation (21). 

It is necessary to express these direction cosines in 
terms of the local slope (q’) of the unknown boundary, 

4 
l(r) = - (1 + rllz)l’z’ 

1 
m(5) = (1 +qr2)1/2. (19) 

Substitution of (19) into the boundary equation (18) 
yields a nonlinear differential equation 

(1+ $2)1/2 - AoBi 

N-l 

K 

zsinh nnq +cosh nnq 
> 

cos nnt; 

+f ( E cash nxq + sinh nlrq 
> 1 sin nnl = 0 (20) 

which cannot be solved without use of numerical 
methods. 

In the numerical solution of (20), the c-axis is 
discretized into M equally spaced points. Central 
differencing is used to approximate q’, and equation (20) 
is recast as 

X g sinh nxqi + cash nq 
> . 

cos na& 

+(lli+;i_:i-1) 

x cash nlrth+sinh nnqi 
> 1 sin nx& = 0 (21) 

(2) With the position of r~i determined from step (1) 
above, the position of q2 can be estimated by changing 
the central difference terms in equation (21) to 
backward difference, that is, 

X g sinh nq +cosh nxri 
) (w&y’) 

cos nnci + 

x 
( 

E cash nq + sinh nnqi 
> 1 sin nn& = 0. (22) 

Noticethat thepositionofq,isnowonlyrelated toqi-i ; 
thus, using the previously found ?I as an estimate for q2 
enables the position of q2 to be obtained via the 
Newton-Raphson method. This procedure is marched 
down the contour S4 from q2 to qM- 1. The estimation 
required to start the iteration at each point qi(for i > 3) 
is provided by extrapolating the calculated values for 
thepreviouspointsq,_ I andrl-2,i.e. vi = 2qi_ I -_rli_2. 

(3) The position of the boundary S., found in step (2) 
above is inaccurate because it is based on the use of 
backward difference for I]’ in (22). However, this 
position is adequate for use as the trial vector in the 
iterative procedure using the central difference for q’. 

The correction vector [a for the Neumann- 
condition problem is evaluated by solving the following 
related equation 

CJI ca = -ccl (23) 
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where [J] is the Jacobian matrix with elements 

Ji,i_l = “i--l-$ [l+(Vi+;~~i-l)lll’z 

z cash nzq, + sinh nnqi 
> 1 sin nr& 

(24) 
N-l 

Ji,i = - C A,(m)’ 
n=l 

X K E cash nx~ + sinh nrrqi 
> 

cos nn& 

+(“i+;iJi-1) 

x E sinh nnq, + cash nrrqi 
> 1 sin nxci (25) 

Ji,i+l = -Ji,i-1 (26) 
for i = 1 to M. The elements of the column vector [Cl 
are 

Ci = the LHS of equation (21) 

evaluated at position i. (27) 

Also notice that vi is only related to vi- r and vi+ r in 
equation (21); the Jacobian matrix is therefore 
tridiagonal. 

There are two ways by which the correction vector 
[Z] can be computed. One could treat the point vi and 
rlM calculated in step (1) as exact. Then z will be zero for 
points 1 and M ; consequently, the index i in equations 
(24)(26) runs from 2 to M - 1, and the Jacobian matrix 
is reduced to a (M -2) x (M -2) matrix. For the 
convenience of later discussion, this method of treating 
the ends as fixed, anchored points is called the ends- 
anchored method (EAM). Alternatively, the ends may 
be treated as floating points. Then zi and Z~ are 
retained in equation (23), and the Jacobian matrix is still 
taken to be a M x M matrix. This method of treating the 
endpoints as floating points is referred to as the ends- 
floating method (EFM). The accuracy of both methods 
will be examined later. 

Robin condition 
Imposing the Robin condition at the unknown 

boundary requires that the following expression be 
satisfied at the boundary 

Bi( 1 + q’2)“2 -A,Bi[1+(Bi~+1)(1+~‘2)‘~2] 

N-1 

-“xl A@ 
I 

E sinh nnq +cosh nrrrl 
> 

cos nnc 

zcoshnnrl+sinhnnq 
>[ 

~‘sinnn<+(1+$2)‘/2 

x fl cos n$ 
n?r I> = 0. (28) 

The procedure required to locate this boundary for the 
Robin-condition problem is identical to that for the 

Neumann-condition problem. In fact, equation (28) is 
the counterpart of equation (20) in the Neumann 
problem. The counterparts of equations (24) (25) and 
(26) are, respectively, 

Ji,i_l = Bi[A,,(Biqi+ l)- T,] 

x)li;;$-l [1+(4i+;~~i-1)2]-1’2 

N-l 

+ C A, ?f_ % cash nrn/i + sinh mtqi sin n7& 
“=I ( 2A5 Bl N 

+‘lii;;Ji-I [~+(lli+;l;;i-1)‘]1’2~cosn~~i} 

Ji,i = _&Bi2 [ 1+~i’~~~e1)2]1’2 (29) 

-~$~A.W’ [(z cash nnqi + sinh nnr/i 
> 

cos nkti 

+(~sinhnn~i+coshnntl,){(liii&~i-l)sinn~<i 

+[l+(?‘+~~~‘~l)i]Li2~cosnn&}] (30) 

Ji,i+ 1 = -Ji,i_l. (31) 

CONVERGENCE, UNIQUENESS, STABILITY 
AND CONSISTENCY 

Convergence 
It is shown that the Fourier series given by equation 

(14) converges. Integrating equation (14) twice by parts 
and taking M to be I@‘(<, O)] < M where e”(<, 0) is 
continuous in the interval 0 < r < 1 gives the result 
that the Fourier series corresponding to equation (14) is 
at most equal to the corresponding term of the series 

> 

which is convergent. By using the Weierstrass test, the 
series can also be shown to converge uniformly. 

Uniqueness 
It has been established that solution to a Laplace 

equation is unique [24]. It remains to be shown that the 
coefficients, evaluated based on the use of the scanned 
temperature given at r] = 0, are as good as those 
evaluated by using the temperature at the fictitious 
boundary, rl = 6, as has been done in common practice. 
Attention is directed to equation (13) which may be 
recast as 

where 

tQ,& = A,(Biq + 1) (33) 
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and 

(34) 

These 8,, and oat components are analogous to the 
DC and AC components in electrical analysis. A DC 
amplification factor can then be defined as 

b&l) 
Plx:=Bin+l==al for ~20. (35) 

Similarly an AC amplification factor can be defined as 

P AC,n = cash nrcrl + fi sinh nsq 
nn 

If the nonhomogeneous condition used to evaluate 
the Fourier coefficients is taken from the boundary at 
rl = 6, then 0 can be expanded at 6 as 

0(& 6) = A,(Bid + 1) 

+ 5 A, z cash nlr6+ 2 sinh nlt6 cos nrcr. (37) 
II=1 > 

Here A,, and A, can be found by using the orthogonality 
property of the eigenfunction, cos nnr ; for example, 

A, = 
s 

?k!!&,& 
,, Bih+l 

(38) 

If the nonhomogeneous condition is taken at rl = 0, 
the following equation will be used instead to find the 
Fourier coefficients : 

e({,O)=a,+ f a “ncosnn{ 
“=l ’ Bi (39) 

where a new set of coefficients a0 and a, have been 
designated in order to differentiate them from the A, 
and A, used earlier. Again, the orthogonality property 
of the eigenfunction, cos nx& enables a, to be expressed 
as 

a, = 
5 

l edo) d& (40) 
0 

Using equation (35), it can be shown that A, = a,. 
Following a similar procedure, A, = a,. The analysis 
given here thus demonstrates that the Fourier 
coefficients are unique, independent of the location of 
the nonhomogeneous condition used to resolve them. 
It is also noted that the uniqueness of the solution for 
the present inverse problem has also been provided in 
the Cauchy-Kowalewsky theorem for Cauchy prob- 
lems with analytic boundary conditions [25]. 

Stability 
The Laplace equation (2) solved in this paper governs 

an equilibrium problem that does not have the stability 
problem that handicaps the solution of hyperbolic and 

parabolic equations [26]. The major concern in the 
present inverse problem is the iterative convergence of 
the Newton-Raphson procedures used in the solution 
ofequations (15), (22), and (28). As has been shown, the 
Dirichlet problem requires solving equation (15) at 
each discrete point &. For this problem, if the initial 
guess rli”) is not accurate enough for equation (16) to 
converge, one can always continue the bisection 
algorithm to provide a more refined starting estimate 

Ilr . (‘) However, in the solution of the Neumann (or 
Robin) condition problem, a marching scheme, based 
on the backward differenced forms of equations (22) 
and(28), has been proposed to evaluate a trial vector for 
vi”) in equation (16) ; see step (2), Example section. This 
trial vector must provide a sufficiently accurate starting 
value in order for the Newton-Raphson method to 
converge. Now, if J-‘($0) exists, then quadratic 
convergence is expected [27]. If the marching scheme 
yields a trial vector that is still inaccurate, then a 
convergent iteration might still be obtained by 
reducing the step size, A& However, another concern 
immediately arises with regard to the consistency in the 
numerical solution, as will now be discussed. 

Consistency 
Consider the Neumann-condition problem for 

example. If n is continuously differentiable in equation 
(21), then 

‘li+l-Vi-1 

W 

= ff:+& 

where E designates the truncation error 

E = r/l” T +O(Ay4). (42) 

Substituting equation (41) into (21) and using the fact 
that 

a(a + 2tl:) < 1 
l+rliz 

the resulting equation can be expressed as 

E(E + 2ni) 
LHS of equation (20) + 2(1 + tlj2)1,2 

+ higher-order terms 

-“$i A,nx (z cash nsni + sinh nxt,i,) 

x(sinn7r[J~~$ (VT% +2q;) = 0. (43) 

It is now seen that the finite-difference equation (21) is 
consistent as long as A<’ goes to zero faster than t$’ 
goes to infinity. Physically, that r$ goes to infinity 
corresponds to a situation that the unknown boundary 
has high-frequency undulations. It can also be shown 
that the derived finite-difference form of the nonlinear 
ordinary differential equation (28) for the Robin 
subproblem is also consistent. 
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NUMERICAL EXPERIMENT 

For a test of the solution methods developed in this 
paper, a numerical experiment is performed that 
consists of three steps as follows : 

(1) A boundary profilef(<), see Fig. 4(a), is arbitrarily 
chosen for S4 in the tests of all subproblems. This profile 
consists of three distinct features that enable a test of the 
strengths and limitations of the solution methods 
developed. The profile is made up of a shallow part at 
the left and a deep part at the right ; the depth ratio being 
1: 3.5. There is also a rapid change of curvature of the 
slab profile near the deep end. With the boundary 
profile chosen, the temperature in the slab may be 
solved as a regular, boundary-value problem in the 
irregular region in order to find the temperature 
expression on surface Ss [28]. 

(2) The temperature expression obtained in step (1) 
above is used to compute an array of temperatures, 
0,(l), which are then taken to be the exact (error-free) 
temperatures at S,. Two arrays of inexact data are also 
generated for the purpose of simulating measurement 
errors. In this effort, because the surface temperatures 
measured by infra-red scanning in actual practice must 
be curve fitted before they can be used for locating the 
unknown boundary, a bias error is the worst one way 
encounter. A bias error of + 5% is thus introduced in the 
exact data to simulate measurement errors. 

(3) From this point on, without using any knowledge 
of the S, profile, the surface temperature arrays 
obtained in step (2) above are used to determine the 
Fourier coefficients in the temperature expressions, and 
these expressions are, in turn, used to locate the 

z $fy--J 
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FIG. 4. Tested boundary configuration at S4 and the resulting 
exact temperatures at S,. 

boundaries using the methods given in this paper. 
Finally, those computed boundary positions are 
compared with the true boundary profile, f(c), for 
error. 

For all the tests made in this work, the range 
0 < 5 < 1 is discretized into M equally spaced points. 
The step size, A& being related to M, is also tested for its 
effect on the convergence in the iterative solution. The 
number of terms taken in the Fourier series is 
determined by taking successively more terms in the 
partial sums of the Fourier series until convergence of 
the series is reached. It is also anticipated that an infra- 
red scanner will be used in practice to measure 
temperature, so the temperature resolution that will be 
considered later in testing the Neumann problem will 
be assessed on the basis of the precision that can be 
provided with that instrument [29]. 

RESULTS AND DISCUSSION 

The temperature curves plotted in Fig. 4(b) represent 
the exact data calculated at the surface S, as a result of 
the conditions imposed at the irregular boundary S,, 
and these curves exhibit two different trends. For a 
Dirichlet or a Robin condition imposed at &, the hot 
spot on the surface appears where the slab is thin, which 
is not unexpected; however, for a Neumann condition 
at the boundary, this trend is reversed. These trends 
have also been found and explained in previous studies 
[17, 181. 

The exact data given in Fig. 4(b) are then used to 
locate the unknown boundary S4 for all three 
subproblems. Test results indicate that the unknown 
boundary can be located accurately for all three 
problems with the solution methods given in this paper. 
Also no difficulty was encountered in achieving 
convergent iteration by theNewton-Raphson method. 
For example, for a Robin condition at the unknown 
boundary, taking M = 11 (large step size) requires 
three iterations to get the boundary profile that is 
accurate to three significant figures. An increase of M to 
26 yields accuracy to four significant figures ; the level of 
accuracy is improved to six significant figures for M 

= 51. The accuracies quoted here relate to the largest 
errors found over the boundary S4, and the least 
accurate results are found near 5 = 0.9, a deep region 
of rapid change of boundary curvature as is not 
unexpected. The test of exact data is now complete. 

The biased data are tested next, and it is found that 
the temperature difference between the two ends of the 
Neumann curve shown in Fig. 4(b) is about 17-28 times 
smaller than those for the Robin and Dirichlet curves. 
In fact, this temperature difference is close to the order 
of the bias error in the infra-red signal; the signal-to- 
noise ratio for the Neumann problem is so small that an 
accurate location of the boundary with the biased data 
is practically impossible in this case. For this reason, 
this Neumann problem will not be tested with the 
biased data ; in the paragraphs that follow, the Dirichlet 
and Robin problems will be studied in detail because 
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they are the ones for which the inverse-problem 
solutions are useful. 

As shown in Fig. 5, a bias error of + 5% in the surface 
temperature in the Dirichlet problem results in an 
underestimation of the depth of the unknown 
boundary, and this effect is particularly pronounced at 
the deep end of the boundary. For example, the error at 
5 = 1 is 10.7x, while that at r = 0 is only 7.8%. 
Conversely, a bias error of -5% in the surface 
temperature results in an overestimation of the slab 
thickness ; however, this time the error at r = 0.96 is an 
alarming 18% while that at 5 = 0 is still moderate 
(8.9%). Because of the deep boundary position for S., at 
c = 1, it is impossible to find the roots of equation (15) 
for points between 5 = 0.98 and 1. Mathematically, this 
can be explained by referring to the residual curves 
plotted in Fig. 6. The residual [that is, the LHS of 
equation (15)] for the noisy data is greater than zero for 
c = 1 for all q, a root thus fails to appear in this case. 
Also notice that this time the inverse solution is unable 
to reveal the rapid change of the curvature of the 
boundary near the deep end ; see the curve for -4% in 
Fig. 5. It can thus be concluded that the solution 
presented in this paper works well for a shallow 
(unknown) boundary, whereas a deep boundary 
cannot be located accurately with this method. This 
limitation is explained below. 

It has been mentioned earlier that the inverse 
problem solved in this paper can be considered a 
Cauchy-condition problem. For the present study, the 
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FIG. 5. A plot of the located boundary positions for the 
Dirichlet problem. 

FIG. 6. A plot of residuals for the Dirichlet problem using noisy 
temperature data for input. 

Cauchy conditions are used to derive the temperature 
expression, which is, in turn, used to locate the 
unknown boundary. Then, an error in the Cauchy data 
is expected to yield an inaccurate temperature 
expression, and as a result, the unknown boundary 
cannot be located accurately. The problem is further 
complicated by the fact that such a temperature error in 
the Cauchy data is not damped moving from the surface 
to the interior of the body. Then, the large error 
associated with deep boundaries should be considered 
as the nature of the problem [30,31]. 

The same trends are found for a Robin condition 
imposed at the unknown boundary, see Fig. 7; 
however, the errors are larger than the Dirichlet 
problem. For example, the errors at < = 0 for the 
underestimated and overestimated positions are 10.8 
and 11.8x, respectively, which correspond again to 
f 5% errors in the surface temperature. Furthermore, 
for a - 5% error in the surface temperature, a refined 
boundary position using central di!Terence can not be 
evaluated beyond r = 0.78 although a solution by 
backward difference can be carried out all the way up to 
r = 0.98, at which point the error of the overestimated 
depth is 29.9%. Both EAM and EFM methods 
mentioned earlier yield identical results, although the 
EFM methods is preferred in the solution of 
complicated geometries. 

CLOSING REMARKS 

In closing, it should be noted that, in the plane slab 
example given above, the boundary conditions at the 
c = 0 and 1 planes have been chosen to be adiabatic 
because the surface temperature gradients at these 
points are zero. It is expected that, if the unknown 
boundary is located deep beneath the surface., then a 
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Temperature : 

where 

[see equations (lo), (11) and (12) for definitions of 01 

pis are roots of 

0) 

(ii) 

(iii) 

for a Dirichlet condition imposed at the unknown boundary, 

for a Neumann condition imposed at the unknown boundary, 

for a Robin condition imposed at the unknown boundary. 

Table 2. A summary of equations for solving inverse problems in spherical coordinates 

Temperature : 

B(p, 4) = t G, s pm+,- n ( +l) P”(COS 4) 
n=O 1 

where 

p=&, Bi=hRo, p II = Legendre polynomial 
0 k 

[see equations (lo), (11) and (12) for definitions of 0] 

pis are roots of 

6) 

(ii) 

(iii) 

1 - f G, s p; +p;(“+l’ P,(cos C#IJ = 0 
II=0 1 

for a Dirichlet condition imposed at the unknown boundary, 

for a Neumann condition imposed at the unknown boundary, 

for a Robin condition imposed at the unknown boundary. 
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FIG. 7. A plot of the located boundary positions for the Robin 
problem. 

zero temperature gradient at the surface may not be 
served as clues for those planes being adiabatic. In such 
an event, these boundaries at ( = 0 and 1 must be 
moved to the physical boundaries of the slab and 
proper conditions imposed there for modelling. 

It may also be mentioned that, although the plane 
slab has been chosen as an example for tests, the 
methods developed for solution in this paper are 
general and applicable to other geometries. A summary 
of equations useful for the solution of other problems in 
cylindrical and spherical coordinates is provided in 
Tables 1 and 2. In order to test the usefulness of the 
presently developed solution methods in nondestruc- 
tive testing of flaws and cavities by infra-red scanning, 
a physical experiment has also been carried out. The 
solution methods work successfully as reported in [32]. 
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UNE METHODE GENERALE POUR LA SOLUTION DES PROBLEMES INVERSES DE 
CONDUCTION THERMIQUE AVEC DES GEOMETRIES DE 

SYSTEMES PARTIELLEMENT INCONNUES 

R&sum&On introduit un problkme auxiliaire dans la solution des probl6mes inverses de conduction 
thermique avec des gkom&ries pas compltitement sp&ifites. En rt5solvant la position de la frontitre inconnue 
soumise B une condition de Dirichlet, on est conduit B la r&solution d’une Equation algbbrique non-lin6aire. 
L’imposition des conditions de Neumann ou de Robin a la front&e inconnue n&essite la r&solution d'une 

Equation diffkrentielle du premier ordre et non linkaire. La methode fournit des rksultats pricis pour des 
donnbes exactes, tandis que des erreurs de mesure rendent le probltme de Neumann insoluble. Les problkmes 
de Dirichlet et de Robin sont rtsolvables, et pour ces problkmes, les erreurs dans la recherche de la frontitre 

augmententavecsaprofondeur,etI'onrecherchelanaturedece problime. 

EINE ALLGEMEINE METHODE ZUR LOSUNG INVERSER WiiRMELEITPROBLEME MIT 
TEILWEISE UNBEKANNTEN SYSTEMGEOMETRIEN 

Zusammenfassung-Bei der Liisunginverser Wlrmeleitprobleme mit nicht vollstHndig definierter Geometrie 
werden Hilfsprobleme eingefiihrt. Nochmaliges Bestimmen des Ortes der unbekannten Begrenzung- 
Gegenstand einer Dirichlet-Bedingung-fiihrt zu der Lijsung einer nichtlinearen algebraischen Gleichung. 
Die Neumann- oder Robin-Bedingung, angewandt an der unbekannten Begrenzung, erfordert das L&en 
einer gewijhnlichen, nichtlinearen Differentialgleichung 1. Ordnung. Diese Methode fiihrt zu genauen 
Ergebnissen fiir exakte Daten, wiihrend MeDfehler das Neumann’ssche Problem unlasbar machen. Die 
Dirichlet- und Robin-Probleme sind noch l&bar. Ihre Natur wird untersucht, wobei die Fehler in den 

untersuchten Grenzen mit der Tiefe zunehmen. 

OSIqHn METOA PEIIIEHMII OEPATHbIX 3A4AY TEI-IJIOI-IPOBOAHOCTM 
B CHCTEMAX C gACTHqH0 R3BECTHOR I-EOMETPMEB 

AIIUOTP~HR-&WI pememia 06paTHbIX 3aAa'i TenJIOnpOBOAHOCTIl B CllCTeMe C He COBCeM TOYHO A3BeCT- 

HOi? reOMcTpHek np‘?AAO~eHO BCnOJlb30BaHBe BCnOMOraTeAbHOi? 3aAaYFI. npH 3aAaHnOM yCJlOBAL4 

&paxne AA,, nononceHHa HeH3BeCTHOii rpaHm,bI HeO6xOAEiMO pemEiTb HeJlEiHeiiHOe anre6pawqecxoe 
ypaaHemie. Hanomemie Ha HeasBecTHym rpaHuuy ycnoBHa HeiiMaHa Anu Po6uHa Tpe6yeT peuIeHIla 

aenmiei?nbrx 06bIKHOBeHHMX Aa~~peHmm.nbeb~x ypaaHeHal nepBor0 nopnnra. MCTOA AaeT xopomae 
pe3yAbTaTbI"p~H~llYllnTO~HbIXAaHHbIX,BTOB~MRXaK113-3a oma6or H3MepeHni-i3aAa'iaHetiMaHa 

CTaHOBnTCa Hepa3pemnMOfi. 3aAaW ace Anpexne H Po6uHa pa3pemHMb1, HO B 3TOM cnyrae O~ABKH 

BospacraIoTc ysenngemieM pa3MepoB Tena. 


